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Data are everywhere ...
multi-form, multi-source, multi-scale

their use raises practical, theoretical and societal
W challenges for helping humans ...

* take decisions

* make a diagnosis

e plan actions

* do prediction

* etc.. 2
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Automated Reasoning

* Problem studied in Mathematics, Logic and Informatics

— Many decidability and complexity results coming from decades of
research in the KR&R community

— Several inference algorithms and implemented reasoners

* The key point
— first-order-logic is appropriate for knowledge representation
— but full first-order-logic is not decidable

— the game is to find restrictions to design:
— decidable fragments of first-order-logic
— expressive enough for modeling useful knowledge or constraints



Key logic-based knowledge representation formalisms

* Rules: logical foundation of expert systems

— the first successful and commercial Al systems (in the 1970s)
* human expertise in a specific domain is captured as a set of if-then rules

e given a set of input facts, the inference engine triggers relevant rules to
build a chain of reasoning arriving to a particular conclusion

— extended to fuzzy rules to deal with uncertain reasoning

* Conceptual graphs: a graphical representation of logic
— logical formalism focused on representing individuals by their classes
and relations (> mid-eighties)

e originated from semantic networks (introduced to represent meaning of
sentences in natural language)

— reasoning algorithms based on graph operations

 directly applicable to Linked Data for querying RDF knowledge bases (RDF
graphs constrained by RDFS statements)

* Description logics: logical foundation of ontologies and the
Semantic Web
(started in the early 1990s)



REASONING ON DATA: FOCUS ON

ONTOLOGY-BASED DATA QUERYING
DATA INTEGRATION

DATA LINKAGE (A.K.A KNOWLEDGE GRAPH
COMPLETION)



Ontologies

« A formal specification of a domain of interest
— a vocabulary (classes and properties)

— enriched with statements that constrain the meaning of the
terms used in the vocabulary

» Java can be a dance, an island, a programming language or a course

 the statement java is a subclass of CS Courses makes clear the
corresponding meaning for java: it is a course

» With a logical semantics

— Ontological statements are axioms in logic
— a conceptual yet computational model of a particular
domain of interest.

e computer systems can then base decisions on reasoning
about domain knowledge.

« humans can express their data analysis needs using terms of
a shared vocabulary in their domain of interest or of expeytise




Example

iIcal representation of subclas

Faculty

Y YT

Staff Department Student Course

AN

AdministrativeStaff AcademicStaff CSDept MathsDept PhysicsDept PhDStudent MasterStudent UndergraduateStudent  CSCourse  Logic MathCourse

Professor Researcher Lecturer Java Al DB Algebra Probabilities

roperties with constraints on their domain and r

(Academic Staff, Courses)
(Academic Staff, Students)
ff , Departments)

nstraints (not expressible in RDFS bu




Query answering over data through ontologies

* A reasoning problem

— Ontological statements can be used to infer new facts and
deduce answers that could not be obtained otherwise

— Subtlety: some inferred facts can be partially known

From the constraint “a professor teaches at least one master course”
Vx (Professor(x) => 3 y Teaches(x,y), MasterCourse(y))

and the fact:
Professor(dupond) (RDF syntax: <dupond, type, Professor>)

it can be inferred the two following incomplete “facts” :
Teaches(dupond, v) , MasterCourse(v)
i.e, in RDF notation, two RDF triples with blank nodes:

<dupond, Teaches, v>, < v, type, MasterCourse>
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Reasoning: a tool for checking data inconsistency

e Some ontological statements can be used as integrity

constraints
“a professor cannot be a lecturer” ; “a course must have a responsible™
Vx (Professor(x) => - Lecturer(x))
Vx (Course(x) => 3 y ResponsibleFor(y,x))
“a master course is taught by a single teacher”
“only professors can be responsible of courses that they have to teach”

Vx Vy (Course(x), ResponsibleFor(y,x) => Professor(y), Teaches(y,x))
e Subtlety: showing data inconsistency may require

intricate reasoning on different rules, constraints and

facts
The facts: Lecturer (jim), Teaches(jim, ue431), MasterCourse(ue431)
+ the above integrity constraints
+ the rule Vx (MasterCourse(x) => Course(x)) leads to an inconsistencM



Description Logics

A family of class-based logical languages for which reasoning
is decidable

— Provides algorithms for reasoning on (possibly complex) logical
constraints over unary and binary predicates

* This is exactly what is needed for handling ontologies
— in fact, the OWL constructs come from Description Logics

e Afine-grained analysis of computational complexity with
surprising complexity results
— ALC is EXPTIME—complete

=>any sound and complete inference algorithm for reasoning on most
of the subsets of constraints expressible in OWL may take an
exponential time (in the worst-case)

“only professors or lecturers may teach to undergraduate students”
Vx Vy (TeachesTo(x,y), UndergraduateStudent(y) => Professor(x) v Lecturer(x))

HTeachesTo.Undejf‘graduaresmdenr L Professor L Lecmrer |

12



The same game again...

* Find restrictions on the logical constructs and/or the
allowed axioms in order to:
— design sublanguages for which reasoning is in P
EL, DL-Lite
— expressive enough for modeling useful constraints over data
* DL-Lite: a good trade-off

— captures the main constraints used in databases and in software
engineering

— extends RDFS (the formal basis of OWL2 QL profile)

— specially designed for answering queries over ontologies to be
reducible to answering queries over RDBMS with same data
complexity (atleast for the fragment of union of conjunctive
queries)

13



Reducibility to query reformulation

Query answering and data consistency checking can be
performed in two separate steps:

e aquery reformulation step
— reasoning on the ontology (and the queries)
— independent of the data

—> a set a queries: the reformulations of the input query

e an evaluation step
— of the (SPARQL) query reformulations on the (RDF) data
— independent of the ontology

= Main advantage
— makes possible to use an SQL or SPARQL engine

— thus taking advantage of well-established query optimization
strategies supported by standard relational DBMS

14



DL-Lite by example

Professor = d Teaches

Vx (Professor(x) = 3y Teaches(x,y))
J Teaches = Course

VxVy ( Teaches(x,y) = Course(y))
ResponsibleFor E Teaches

VxVy ( ResponsibleFor(x,y) = Teaches(x,y))

(funct ResponsableFor)
VxVyVz(ResponsibleFor(y,x)AResponsibleFor(z,x) = y=2)
Lecturer E - (3ResponsibleFor)
Vx Vy (Lecturer(x) A ResponsibleFor(x,y) = 1)

15



DL-Lite: a frontier for CQ reducibility

* The reasoning step is polynomial in the size of the
ontology

* The evaluation step has the same data complexity as
standard evaluation of conjunctive queries over
relational databases

— in ACo (strictly contained in LogSpace and thus in P)

* The interaction between relation inclusion constraints
and functionality constraints makes reasoning in DL-
Lite P-complete in data complexity
— DL-Liteg is CQ-reducible
— full DL-Lite is not CQ reducible

* reformulating a query may require recursion (Datalog)

16



Mappings

Py

Ontology (DL-LiteR)
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Domain ontology + mappings:
the semantic glue between heterogeneous data sources

query
Two main algorithmic approaches
1. Answering queries by query rewriting :
e query reformulation using ontologies
(backward reasoning)
* query translation using mappings
mappings | mappings | 2+ Answering queries by data materialization:
mappings « Data extraction and transformation using
data % mappings (e.g., from relational to RDF)
— data > * Data saturation (forward reasoning on data
> and ontological statements)

The complexity and feasability in practice depend on the languages
used for expressing the queries, the mappings and the ontology




ANR project CONTINUUM (2008-2012)

CONTinuité de service en Informatique UbigUitaire et Mobile

(joint work with F.Jouanot and J.Coutaz)

Find devices in the environment that offer
services of a certain type

Environment



Ontology (extract)

Device

\

“EmbeddedComputer
CarGPS
“Port.GPS
subclass_of
-5
instance of

offers




My Corporis Fabrica

(joint work with Olivier Palombi, LADAF, LJK)
[Journal of Biomedical Semantics, 2014]

Ontology-based integration of complex anatomical models

— rules for mapping structural, functional, spatio-temporal and 3D
models of anatomy

[ mcf:Anatomical_entity J [ mcf:Functional_entity ]
4
dfs:subClassOf dfs:subClassOf
rais:subass (Jis-subass rdfs:subClassOf | rdfs:subCIassOfrfj \\\rdfs:subC\assOt
I / A
. . - ! mcf:Simple_mouvement_ .

mcf:3D_scene mcf:Muscle [ of_knee_ joints J [mcf.GaltJ

\ 3 L

rdf:type rdf:type rdfs:subClassOf rdfs:subClassOf mcf:isinvolvedin

mcf:scene_1 mef:object_1 mcf:object_2 - p| mcf:Sartorius — =-(mcf:Flexion_of_knee_joint
mcf.describes mcf:participatesTo L
%f:contains_/
mcf:contains

mcf.displays

IF( ?x rdf:type mcf:3D-object YAND( ?x mcf:Describes ?y )
AND( ?y rdfs:subClassOf mcf:Bone )
THEN( ?x mcf:hasColour ‘yellow” ) (R12)
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for interactive simulation and visu

QUERY

Query in English :

May | see, in the curent 3D scene, the bones on which the left sartorius

muscle is inserted ?
Query in SPARQL

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

DATA
| mcf:Left_sartorius I
A
PartOf PartOf
mcf:Distal_tendon_of mcf:Proximal_tendon_of
_left_sartorius _left_sartorius
| Describes [
InsertOn InsertOn
A 4 Y
mcf:Medial_part_of_proximal mcf:Left_anterior_superior
_epiphysis_of_left_tibia _iliac_spine
| |
PartOf PartOf
¥ T 4

mcf:Left_tibia

rdf:type

mcf:Left_hip_bone

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX mcf:<http://www.mycorporisfabrica.org/ontology/mcf.owl#>

select ?bone ?individual ?mesh

where {?s mcf:PartOf mcf:Left_sartorius.
?s mcfilnsertOn ?z.

?z mcf:PartOf ?bone.

7individual rdfs:Describes ?bone.
7scene mcf:Contains ?individual.
?individual rdf:type mcf:3D-object.
?individual mcf:hasMesh ?mesh }

Contains
mcf:3D-object mcf:3D-object
Describes

hasMesh / rdf:type

Contains
Displays

'

Describes

rdf:type

Contains
rdf:type

N

mcf:Lef_lower_limb

mcf.3D-scene

hasMesh

7bone ?individual 7mesh
Answer
mcf:Left_tibia mcf:id6 ../I_tibia.obj
mcf:Left_hip_bone mcf:id7 ../I_hip_bone.obj
3D view left hip bone
(mef:id7)

Corresponding triples :

¢ mef.Distal_tendon_of_left_sartorius mcf:PartOf mcf:Left sartorius »

¢ mef:Distal_tendon_of_left_sartorius mcf:InsertOn mcf:Medial_part_of_proximal_epiphysis_of_left_tibia »

¢ mef:Proximal_tendon_of_left_sartorius mcf:PartOf mcf:Left sartorius »

¢ mcf:Proximal_tendon_of_left_sartorius mcf:InsertOn mcf:Left_anterior_superior_iliac_spine »
« mecf:Medial_part_of_proximal_epiphysis_of_left_tibia mcf:PartOf mcf:Left_tibia »

« mcf:Left_anterior_superior_iliac_spine mcf:PartOf mcf:Left_hip_bone »

¢ mcfiid rdf:itype mcf:3D-scene ) ( mcfiid mcf:Displays mcf:Left_lower_limb »

¢ mefiid1 rdf:type mcf:3D-object ; ¢ mcfiid6 rdf:type mcf:3D-object ) ¢ mcfiid7 rdf:type mcf:3D-object »

¢ mefiid mef:Contains mcfiidl ) ¢ mcfiid mcf:Contains mcfiid6 » ¢ mcfiid mcf:Contains mcfiid7

¢ mefiidl mcf:Describes mcf:Left_sartorius » ¢ mcfiid1 mcf:hasMesh ™"..\geometries\| sartorius.obj";

¢ mef:idé mcf:Describes mcf:Left_tibia » ¢ mef:idé mcf:hasMesh""..\geometries\|_tibia.obj"

¢ mef:id7 mcf:Describes mcf:Left_semimembranosus : ¢ mcfid7 mcf:hasMesh “"..\geometries\|_hip_bone.obj"

query

insertions
of sartorius

Before
query

left sartorius

left tibia
(mcf:idé)




ooris Fabrica

[Journal of Biomedical Semantics, 2015]

is_a

describes

from_stage subClassOf

temporal_entity ]

[ ———————

to_stage subClassOf g
has_process -7

process is_ a— left_kidney growth_between_te14_and te20 [-------—-——————————-=~

impact_process

hypoplastic_kidney —— kidney_growth depends_on —P interaction_between_kidney_and_ureter
absence_implies —

subClassOf o~ _—

a_a is_a

disease
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Ontology-based 3-layers architecture

Langage naturel
guidé

AV

SPARQL End-point Formulaire Webservice
dynamique

Interface
Partenaire

/ Etudiant \ Référentiel Evaluation Question
:_JD Q /' [ I ] .
£°) g Inscription ECN Spécialité Dossier _ gue’stlons QR
0O O A progressif isolés
c € Action de répond /
- ction de répondre Objectif //

Sous-objectif

MAIPING Seblink) b
Integration
> > ' -u UMLS

W < Extraction | Sides Dbms Wiki Sides standard

Materialization approach:

- small ontology (semi-automatically constructed)

- Instantiated by mappings with a Dump of SIDES (activities of 64 957 students over 3 years):
=> 1.5 Billions triples

- Scales to complex SPARQL 1.1 queries (with aggregation and subqueries) for data analytjcs

Sources
Externes



Data linkage

» Deciding whether two URIs refer to the same real-world entity (within
or across data sources)

[http:// dbpedia.org/]acques_Martin] differentFrom ? [http:// ina.fr/Jacques_IVIartin]
ina:name

foaf.givenName [IVIartin, Jacques

Jacques ina:nationality
foaf:surName @:

Martin .
ina:birthYear
dbpprop:birthPlace | 1933

France ina:deathDate
tbpprop-dateofBirth E2007_09_14: ________________________________________

1933-06-22 N ¢
[http:// ina.fr/diamecnhem_1_12_198g]| !na:presenter_o

ina:titl
[ Dimanche Martin ]M

* Crucial task for data fusion and enrichment

i

dbpprop:presenter

, Dimanche IVIartin]

* A hot topic in Linked Open Data

* Also related to data privacy

27



Existing approaches

* Numerical methods based on aggregating similarities
between values of some relevant properties

— Specification through linkage rules (e.g., in Silk and LIMES) of:
1. the properties to consider within the descriptions of individuals,
2. the similarity functions to use for comparing their respective values,
3. the functions for aggregating these similarity values

— Linkage rules: defined manually or learned automatically
— Main weakness: no formal semantics and no rule chaining

* Symbolic methods based on logical rules equipped with
full reasoning
— Translation of schema constraints into logical rules
— Logical inference of sameAs facts
— Main weakness: not robust to incomplete and/or noisy data
—100% precision but risk of low recall

28



Probabilistic Datalog revisited to
reason with rules and probabilities

e Joint work with M. Al-Bakri, M.Atencia, J.David and
S.Lalande (Qualinca ANR project with INA)

[ECAI 2016] Uncertainty-Sensitive Reasoning for Inferring sameAs Facts in Linked Data

— ProbFR: an inference algorithm that computes the probability
of inferred facts as well as the uncertainty provenance of this
computation

— a series of experiments over real-world large RDF datasets
showing the benefits and the scalability of our approach

29



Probabilistic Datalog ")

* A simple extension of Datalog in which rules and facts are
associated with symbolic probabilistic events

* Logical inference and probability computation are separated

— Step 1 (ProbFR) : computation for each inferred fact of its
provenance (the boolean combination of all the events associated
with the input facts and rules involved in its derivation)

e exponential in the worst-case
* by-passed by a practical bound on the number of conjuncts in the
provenances and a priority given to the most probable rules and facts

— Step 2: computation of the probabilities of the inferred facts

e from their provenances in which each event of input facts and rules is
assigned a probabilistic weight

* based on independence and disjointness assumptions to make it feasible

(*) N. Fuhr, Probabilistic models in information retrieval, The Computer Journal, 19925,
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Facts: uncertain facts are in red, certain facts are in blue

Rules: uncertain rules are in red, certain rules are in blue

. (?x sameName 7y ) = (7x sameAs ?y)

. (?x sameName ?y), (?x sameBirthDate ?y) = (7x sameAs ?y)
. (?x marriedTo 7z), (?y marriedTo 7z) = (7x sameAs ?y)
. (?x sameAs 7z), (7z sameAs 7y) = (?xsameAs ?y)

ustrative Example

fi - (ih sameName in)  fo : (iy sameBirthDate in)  f3 : (i» marriedTo i3)

fa . (ia marriedTo i3)

Provenance of inferred facts

fs : (io sameName iy)

Inferred facts

Provenance

Uncertainty Provenance

(i sameAs ig)

(e(r) Ae(fs)) V(e(r3) A e(fs) A e(fa))

-

(i1 sameAs ip)

(e(r1) Ae(f1)) V(e(r2) Ae(fr) Ae(fz))

e(rn) Ae(f)

(i1 sameAs ig)

e(rq) N Prov((iy sameAs ip))
AProv((ip sameAs iy))

e(rn) Ae(f)




rative Example (cont.

Rules: uncertain rules are in red, certain rules are in blue

r : (?xsameName ?y) = (7x sameAs ?y)
r : (?x sameName ?y), (?x sameBirthDate 7y) = (7x sameAs ?y)
r3 : (?x marriedTo ?z), (?y marriedTo 7z) = (7x sameAs ?y)

. (?x sameAs 7z),(7z sameAs ?7y) = (7x sameAs ?y)

Facts: uncertain facts are in red, certain facts are in blue

fi : (i1 sameName i)

fa

. (i marriedTo i3)

f : (i1 sameBirthDate i)

f3 : (i» marriedTo i3)

fs : (io sameName iy)

Computation of the inferred facts probabilities

Inferred facts | Uncertainty Provenance Probability

(i sameAs iy) T 1

(i sameAs ip) e(r) A e(f) Pr(e(ry)) x Pr(e(f))
(i sameAs iy) e(rn) A e(f) Pr(e(r2)) x Pr(e(fy))




rative Example (cont.

Rules: uncertain rules are in red, certain rules are in blue

. (?x sameName ?y) = (7x sameAs ?y)

. (?x sameName ?y), (?x sameBirthDate 7y ) = (?x sameAs ?y)
. (?x marriedTo ?z), (?y marriedTo 7z) = (7x sameAs ?y)
(

?x sameAs ?7z),(7zsameAs ?y) = (?x sameAs ?y)

Facts: uncertain facts are in red, certain facts are in blue

fi : (it sameName in)  fo : (i1 sameBirthDate i)  f3 : (i marriedTo i)

fa : (ia marriedTo i3)  f5 : (io sameName iy)

Computation of the inferred facts probabilities

Inferred facts | Uncertainty Provenance | Probability
(i sameAs iy) T 1

(i sameAs i)

0.8 x 0.9

(i sameAs iy)

0.8 x 0.9




Experiments: interlinking DBpedia and MusicBrainz

Size and number of entities in the two datasets

Class DBpedia | MusicBrainz
Person 1,445,773 385,662
Band 75,661 197,744
Song 52,565 448 835
Album 123,374 1,230,731

Number of RDF triples | 73 millions | 112 millions

86 rules from which 50 are certain and 36 are uncertain

ID

Rules

sameAsBirthDate

(7x :solrPSimilarName ?/), (?y skos:myLabel ?/),
(?x dbo:birthDate ?date), (?y mb:beginDateC ?date)
= (7x :sameAsPerson ?y)

sameAsMemberOfBand

(

(?x :solrPSimilarName ?/), (?y skos:myLabel ?/),

(?y mb:member_of_band ?gr2), (7gr2 skos:myLabel ?/g),

?grl dbp:members ?x), (?grl :solrGrSimilarName ?/g)
= (7x :sameAsPerson ?y)




Experimental results

Gain of rule chaining

43,923 links not discovered by Silk among the 144,467 sameAs links
discovered by ProbFR between DBpedia and MusicBrainz

>

Gain of using uncertain rules for improving recall without losing much
in precision (precision and recall estimated on samples)

DBpedia and MusicBrainz
Only certain rules All rules
P R F P R F
Person | 1.00 | 0.08 | 0.15 | 1.00 | 0.80 | 0.89
Band 1.00 | 0.12 | 0.21 | 094 | 0.84 | 0.89
Song - - - 0.96 | 0.74 | 0.84
Album . - . .00 | 0.53 | 0.69

Gain of exploiting probabilities to filter out wrong sameAs links

P R g
Band>o.00 | 1.00 | 0.80 | 0.89
Song>0.60 | 1.00 | 0.54 | 0.72




Lessons learnt and perspectives

Probabilistic Datalog: a good trade-off for reasoning with uncertainty
in Linked Data

Some restrictions compared to general probabilistic logical
frameworks (e.g., Markov Logic)

@ uncertain formulas restricted to Horn rules and ground facts
@ probabilities computed for inferred facts only

Better scalability and more transparency
@ explanations on probabilistic inference for end-users

@ useful traces for experts to set-up the rules probabilities

Future work ANR ELKER project

@ A method to set up automatically the threshold for filtering the
probabilistic sameAs facts to be retained

@ A backward-reasoning algorithm on probabilistic rules for importing
on demand useful data from external sources




Concluding message

e Semantic Web standards, data and applications are there,
due to the simplicity and flexibility of the RDF data model

* Promising applications are emerging for which reasoning on
data is central
— Fact checking

— Interactive and personalized data exploration and analytics

Many challenges remain

— to handle at large scale the incomplete and uncertain data

=> Combining numerical and symbolic Al is hard but
worthwhile to investigate more deeply
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